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PURE PRODUCT POLYNOMIALS AND THE 
PROUHET-TARRY-ESCOTT PROBLEM 

ROY MALTBY 

ABSTRACT. An n-factor pure product is a polynomial which can be expressed 
in the form H[ =1(1-x"'i) for some natural numbers ao, ... , anc We define the 
norm of a polynomial to be the sum of the absolute values of the coefficients. 
It is known that every n-factor pure product has norm at least 2n. We describe 
three algorithms for determining the least norm an n-factor pure product can 
have. We report results of our computations using one of these algorithms 
which include the result that every n-factor pure product has norm strictly 
greater than 2n if n is 7, 9, 10, or 11. 

I 1. INTRODUCTION 

For any n E N, an n-factor pure product is a polynomial which can be expressed 
in the form 

n 

fl(1-xC'i) 
i=1 

for some a,.... , an E N. The 1-norm of a polynomial is the sum of the absolute 
values of its coefficients. That is, for any polynomial p(x) =Edo aix, the 1-norm 
is Ed Jail which we denote by lp(x)lll. Actually, since the 1-norm is the only 
norm we use in this paper, we will usually just say "norm" rather than "1-norm". 
For each n E N, define 

Al (n) = min (lI(1-xe ) 
.cl.. cnENi= 

Old results tell us that A1 (n) > 2n for every n E N. A simple proof of this 
is repeated in [BI94]. Before our research, it was known that A1 (n) = 2n for 
n E {1, 2,3,4,5,6, 8} and no other values of A1 (n) were known. In [BI94], Borwein 
and Ingalls conjectured that A1 (7) = 16, which we verify in this paper, and they 
posed the following three (not entirely distinct) problems, which we solve in this 
paper. 

5. Show that there is no 7-factor pure product of norm 14. 
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6b. Prove 

miin (I(-X ) > 2n 

for some n. (Problem 5 is the n = 7 case of this.) 
8. Find a true algorithm, even an impractical one, that determines if there is a 

7-factor pure product of norm 14. 
We will describe three algorithms for computing A1(n), the most efficient of 

which we have implemented to find that Al(7) = 16, A1(9) = 20, A1(10) = 24, and 
A1(11) > 24. 

A problem on which pure products have some bearing is the Prouhet-Tarry- 
Escott Problem. We use square brackets to delimit a list, and we call two lists 
(or, more precisely, k-lists) [al,... ,ak] and [bl,... , bk] equal if (ai,... , ak) is a 
permutation of (b1, . . . , bk). That is, a list is like a set except that repeated elements 
are allowed, and a list is like a tuple except that the order of entries does not matter. 
(Some authors call a list a multiset.) Suppose we have two unequal lists of integers 
[a1, ... ak] and [bl,... , bk] such that 

k k 

air 5 bir 
- i=l i=l 

for r = 1, 2,.. , d. Then we say that [al, ... , ak] and [bl,... , bk] form a multigrade 
of size k and degree d. The Prouhet-Tarry-Escott Problem is to find multigrades of 
the smallest possible size for each degree. In Section 5 we repeat old results showing 
that the size of any multigrade is strictly greater than its degree. For each degree 
up to d = 9, multigrades of size d + 1 are known, and it is conjectured (cf. [BI94, p. 
10]) that such multigrades exist for all degrees. The connection to pure products is 
that any n-factor pure product of norm 2k can be used to construct a multigrade 
of degree n - 1 and size k. This conjecture is the reason for being particularly 
interested in determining the values of n for which A1 (n) = 2n. 

The problem of determining the least possible 1-norm of an n-factor pure product 
is also related to a problem of Erdos and Szekeres. Their problem [ES58] was exactly 
the same except that instead of the 1-norm of a polynomial, they used the oo-norm 
which is defined by 

d d 

a|E ix 1 {sup Zaiz 
i=O {z(EG:jzj=1} i=O 

where C is the set of complex numbers and JzJ denotes the modulus (i.e., absolute 
value) of the complex number z. For any polynomial Ed aixi the 1-norm and 
the oo-norm are related by these inequalities: 

ZI-aix i d d 

d+1 1? < ||5aix| < 5aix| i= 0 i=O 1 

2. PROPERTIES OF THE 1-NORM 

The problem of finding pure products of small 1-norm has an equivalent state- 
ment in terms of certain equalities among sums of subsets of a set of natural num- 
bers. The following easy lemmas describe this connection. We use Z to denote the 
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set of integers, N to denote the set of natural numbers, and for each n E N, we 
write n to denote the set {1, .. I n}. 

Lemma 2.1. Let n and a,,... ,an be natural numbers. Let d = En ai and 

ao,... Iad E Z so that, as polynomials, Hn=I(I x,) = d=0akXk. For k 
0,... ,d, let 

{k= {I C n: II even, Z cai = k}, 
iEI 

Ok= {I C n: II odd,Zc i = k}. 
iEI 

Then ak=| Sk - Ok fork =0, ... ,d. D 

The proof is obvious. We will use Lemma 2.1 frequently without explicitly 
mentioning it. 

The following lemma provides a useful condition for ending a branch in the search 
tree of our algorithm in Section 5, at least for small values of n. 

Lemma 2.2. In Lemma 2. 1, if n is odd, then ak -ad-k for k O... ., d. If n 
is even, then ak = ad-k for k = O,... , d. 

Proof. Suppose n is odd. Observe that for k = O.... , di 

Sd-k = {n\I IC OI k 

and 
Od-k = {n\ I: I C Sk}j 

So the result is clear from Lemma 2.1. In the special case k = d this tells us that 2 
ad = 0. 

Now suppose n is even. Then, for k O,.. I, d, 

Ed-k = {n\I I C Sk} 

and 
Od-k -{n \I: IC Ok} 

Again, the result is clear from Lemma 2.1. F 

The following lemma might be considered a more comprehensive statement of 
Lemma 2.1. One of the simplest implications of this lemma is that the norm of 
every pure product is even. 

Lemma 2.3. Let a,,... ,an E N. Let P be a set so that for every P E P, P 
{ I, J} for some I, J C n such that II is even, IJI is odd, and >is I i = >j EJ1 j. 
Furthermore, choose P so that P n Q = 0 for all distinct P, Q E P. Suppose P is 
maximal with these properties. Then J7Jfj=1(1 -xx')J _=- 2 1-2 Pl. 
Proof. Put d = En ai and for k = 0, ...,d, put Pk= {{I, J} E P: :EiEc i= 

,jE jaj = k}. Then each {I, J} E Pk such that II is even and JJI is odd has 
I E Sk and J E Ok, using the notation of Lemma 2.1. Furthermore, for each 
k = 0... ,d, Iaki = I8kI + ok| - 2min{ Skj, O(kj} = 14kI + |OkI - 2PkI. So 

| I F=-(I - xji)1 = EZk=O jakI = Ek=0(j(kI + O0kI -21Pkl) =2 - 21P1. 

Our most extensive use of these lemmas is in the algorithm in Section 5, but 
they also give us the following result. 
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Theorem 2.4. Let n > 1 and let a,,... an E N. Let d = a, . If n is even 
or d is odd, then H|jn=I(,- XC,,) 1I is a multiple of 4. 

Proof. Assign d, a,.... ,ad o, ... , Ed, o, ... , cOd as in Lemma 2.1. Then 

n d d 

f(1-cxa) |=ZakI=Z 5EkI-10kI 

i=1 1 k=0 k=0 

d 

=E (I-k| I+ ok| -2min{fSkk, ok|}) 

k=O 
d 

=2n 2 I:2min{5ikI, Ak}- 
k=O 

From the proof of Lemma 2.2, it is apparent that for k =O..- , d, {5kI, Akl} 

{f?d-k~i ,d-k }. So if d is odd, then 

d LAI d 

Emin{5ikI, 1Ck|}= EZmin{5ikI, k} +ZE min{5ikI, k|} 
k=O k=O k=Fd] 

l 2 2~~~~~~~~ 
A I 

=2 Z min{5ikI, C(k|} 
k=O 

and IHn1 I (1 - xc ) 1II is a multiple of 4. 
Now suppose d and n are both even. Then Id I is even since if I C n such that 

III is even and ,, as, = 2, then In\ I is even and Z2En-I - =. Likewise, d 

is even. Since 
fJ1- )d 

11(1 - xa? = 2 -2Emin{fSk, Akl} 
t=1 1 k=O 

/d _1d\ 

=2n-_ 2 EminfI6kI, 1(9k|}+ minfi|6d |, |(0d |} + E: minfi6k| (k| Al 

k=0 k=d+l/ 

d - 1 
2 

2n- 4 E min{fSkI, C(k } + 2min{f 2d 1, ,0d 1C } 
k=O 

this tells us that IH,'=1(1 - xa) 1 is a multiple of 4. D 

The following result is not difficult or original, but we want to mention it in 
order to point out an oversight of Borwein and Ingalls. Bachman and Narici [BN66, 
Example 19.5, pp. 312-313] say without proof that the set of all polynomials with 
complex coefficients forms a normed algebra when the 1-norm is taken as the norm 
of the algebra. Implicit in this statement is the following result. 

Theorem 2.5. For all natural numbers m, n and a1,... , m!31 ... * *vnn 

m n m 11 
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Proof. Let M, N and a, ... , aM, bo ... , bN, co,.. ,CM+N so that EZio akXk - 

Ji=21(1 - X't) Zk=O bkxk I J1(1 - xli), and Zj4; Ck~k =fi1(i -Xt)- 

R=(1 -( x'). So each Ck Ei+j=k aibj and 

M+N M+N M+N 

E Ck = E 5 aibj |< E E laibI 
k=O k=O i+j=k k=O i+j=k 

m~~~~~ E Iis I jl- ( la il) (a ]b I 
<=t<M i=O j=1 

|x|cv x ) | J | I x ,| 

Theorem 2.5 tells us that Al(m + n) < AI(m) Al(n) for all m, n E N. In 
fact, if m + n > 2, then Al(m + n) < Al(m) Al(n), but we will not prove this 
since we have not been able to prove that the difference between A1 (m + n) and 
A1 (m) . Al (n) is big enough to be interesting. 

In [BI94], Borwein and Ingalls give upper bounds on some values of A1 (n). We 
are now able to see that two of their bounds are weaker than they could be. They 
say that A1(22) < 140, A1(58) < 6268, and A1(80) < 1,629,900. But now we see 
that A1 (80) = A1 (22 + 58) < A1 (22) . A1 (58) < 140 6268 = 877, 520. In fact, we do 
even better than this by explicitly computing the norm of the product of Borwein 
and Ingalls's 22-factor and 58-factor pure products - it is 58,488. Borwein and 
Ingalls also say that Al (41) < 1348, A1 (59) < 7572, and Al (100) < 41,947,220. So 
Al (100) = A1 (41 + 59) < Al (41) .Al (59) < 1348 7572 = 10,207,056. Explicitly 
computing the norm of the product of their 41-factor and 59-factor pure products, 
we find that this 100-factor pure product has a norm of 385,620. Hence, 

Borwein & new 
Ingalls 

A1(80) < 1,629,900 58,488 
A1(100) < 41,947,220 385,620 

3. A SIMPLE ALGORITHM 

If one wants to determine whether there is an n-factor pure product having norm 
at most k, the obvious unsophisticated method to use is simply to keep substituting 
values for a,1,... , a?n and see what norms result. Before our research, it was known 
that Al (n) > 2n for all n E N and Al (n) = 2n for n < 6 and n = 8. So the obvious 
question to ask was: Is Al (7) = 14 ? Borwein and Ingalls [BI94] said they computed 
extensively without finding any 7-factor pure product having norm 14, and they 
conjectured that A1 (7) = 16. As an example of a 7-factor pure product having 
norm 16, they presented fl 71(1 - x') where [a1,... ,a7] = [1,2,3,4,5,7, 11]. 
Independently of each other and of Borwein and Ingalls, S. Maltby [M94a] and 
Walley [W94] searched all possible values of ai,.... ., u Up to about 40 and found 
the following 7-lists for [a,, ... , a7] which yield a 7-factor pure product of norm 
16. Previously, we had found all but two of these without computer assistance as 
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reported in Section 5. 

[1, 1, 2, 3,4, 5, 7] 
[1, 2,3,4, 5, 7,11] 

[1,2,3, 5, 7,8,13] 

[1,3,4,5,7,8,11] 

[1,3,4, 5,7,11,17] 
[1,3,4,7,10,11,13] 

[1, 5, 6, 7, 8, 11, 13] 

[2, 3, 5, 7, 8, 11, 13] 

Before our research, it was unknown whether any finite amount of searching could 
be considered exhaustive. The proof of Theorem 3.4 uses Bombieri and Vaaler's 
[BV83] improvement of Siegel's Lemma [S29]; [M69, pp. 32-33] to show that to find 
all possible norms of n-factor pure products, it suffices to check the norms for all 

values of ?S1,- ... , on up to ^/nn-1(n - 1) 2 (which is slightly less than n&31)). 

One could just use Siegel's Lemma, but it yields a weaker bound of nn-. 

Lemma :$.1. Let ai,i I. . . I an- c {1, 0, .-1}. Then there exist integers x, ... n, 

each of absolute value at most Vlnn-1(n - 1) 2 satisfying 

a, a, ~~~FXi 
[ 

a1,1 a1,2 

n-. a,2| an-1,1 an-1,2 ... an-l,n ] 
Xn 

Proof. Let A denote the (n-1) x n matrix in the statement of the lemma. Theorem 
1 in Bombieri and Vaaler's paper [BV83] tells us that there exist integers x1, ... , Xn 

each of absolute value at most /det(AAT) which solve this system. In the (n - 

1) x (n-1) matrix AAT, each entry is a dot product (a, 1, . . ., ai,n) (aj,i,.I an) 
of absolute value at most n. So Hadamard's inequality tells us that I det(AAT)I < 

n 1(n - 1) 2, and Bombieri and Vaaler's result gives us the conclusion of the 
lemma. D 

Lemma 3.2. Suppose A is an n-column matrix of rank n - 1 and each entry of A 
is 1, 0, or -1. Suppose there exist positive reals Yi, .. ., yn so that Ay = 0. Then 

there exist positive integers xl,... , xn each at most nn- (n - 1) 2 satisfying 
Ax= 0. 

Proof. Since A has rank n - 1, we know that 

{(xi,.. x*n) Ax = 0} = {t(yi,... Yn) t E R}. 

Since Yi,... , yn are all positive, this tells us that any x1, ... , xn satisfying Ax = 

0 are all positive, all negative, or all zero. Lemma 3.1 tells us that there are 

integers x1,... , xn not all zero and each of absolute value at most 2n1 (n-1) 2 

satisfying Ax = 0. If these xi, . . , xn are all positive, then we have the conclusion of 
the lemma. Otherwise, these x1, . , xn are all negative, and we get the conclusion 
of the lemma by using -xi,... , -xn. D1 
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The following lemma may seem familiar to readers who have searched for positive 
systems of roots determining a root system. Other interesting connections of root 
systems to pure products of small norm are discussed in [M96] and [M97]. 

Lemma 3.3. Suppose A is an n-column matrix of rank n - r where r > 2 and 
each entry of A is 1, 0, or -1. Suppose there exist positive reals Yi,...I yn so that 
Ay = 0. Then there exists an n-column matrix A' of rank n - r + 1 such that each 
entry of A' is 1, 0, or -1, and so that {(xi,... ,xn): A'x O} c {(xi,... Ixn) 
Ax = O}, and so that there exist positive reals y1 ..... yn satisfying A'y' = 0. 

Proof. Since A has rank n - r, we know that there exist z1,1, ... Zrn E R so that 
r 

{(xli... * xn): Ax = O} ={Zti(zil.... tZin) ,t.. ,tr E R}. 
i=l1 

That is, all solutions of the equation Ax = 0 are described by the formula 

tl (Z1,1v* I . Zl,n) + t2 (Z2,1** I . Z2,n) +. * +tr (Zr,l 1 ..vZr,n) = ( Xi, - IXn)- 

We assume without loss of generality that (z1,1,... , z1,n) = (Y1i,. , Yn). SO we 

have zi,1 ... , Zl,n > 0 and (Z1,1, Z2,1), . . . I (Zl,n, Z2,n) all lie in the half-plane in R12 

where points have positive first coordinates. Since (Z2,1,..., Z2,n) is not a scalar 
multiple of (z1,1,,... , Zn) we know that the vectors (z1,1, Z2,1), II (Zl,n Z2,n) are 
not all coincident. Let k, I E n so as to maximise the angle between (Zl,k, Z2,k) and 
(Zi ,i , Z2,1). Then for i = 1, ... , n, let z',i, zi so that z ,i (z1,k, Z2,k) + Z2,i (Z1,l, Z2,1) 

(Zl,i, Z2,i)- Since every vector (Zl,i, Z2,i) lies in the sector bounded by (Zl,k, Z2,k) 
and (Z1,i, Z2,1), we know that z , Z2 > 0 for all i =1,.. , n. Also, notice that 
Z ,k Z21 1 and Z2,k =Zl, 

Let t1, t2 E R. Let tl = t1Zl,k + t2Z2,k and tl = t1z1,1 + t2z2,1. Then for each 

z=,. n, 

t1Zl 
? tz2, 2 (tlZl,k + t2Z2,k)Zlvi + (tlZl,l + t2Z2,1)Z2,i 

- 
t1(Zl,kZl i + Z1,1Z2,i) + t2(Z2,kZl/i + Z2,1Z2/,) 

= tlZli + t2Z2,i- 

So 

t1(Z1, 1 v Zl ,n) + t/2 (Z2/, 1,, - I 2 2,J) t1 (Z1,1 ,** Z1,n) + t2 (Z2, 1, - Z2,n)- 

So we see that 

{ti(zi,i, I* Zl,n) + t2(Z2,,1.. Z2,n) t1 t2 E R} 

= tl (Z/~ z/ Z,n+ 2Z, z/ 2,n E R}. 

Let A' be the matrix A with one row appended, that row being [ a ... an 
where ai = 0 for i = 1, ... , n, except for ak = l and a, -1. Then 

I(X1, . .. I n) :A/x = 0 

= {(X1,. . . ,Xn): Ax = O, (a,,... *an) * (Xi. .. I Xn) = ?} 
= J(X1, - xn) : Ax = 0, Xk = X11 

C{ (X1, - vXn) :Ax = 0} 

To prove the conclusion of the theorem, we just have to show that there are positive 
reals y,... y, Yn such that A'y' 0. We have yi, . . ., Yn so that Ay = 0 and 

1(Z1,1, * .. Zl,n) +?O(Z2,1i,.. , Z2,n) + + O(Zr,li,. Zrn) ( Y1, , Yn) 
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So there exist t' and t' (in fact, t= Zl,k and t= zig,) so that 

1(Z1li,... * +t/2(Z2/, 1 Z2 J +?O(Z3,1, ,Z3,n) +* +?O(Zrli... ,Zrn) 
= ( Y1, - - n)- 

Let t' maxftItl} and let y/,... ,y so that 

t ( .l J , z t) ?t'(Z2,1, , z-2,) +?(z3, , z3In) ? + ?(Zr~i.. , Zrn) 
= ( Y/1, , n/ - 

Since t' > tl tl and z Z1,... / , > 0 we know that yi > yi for 
i = 1, ... ,n. Since Yi,... Yn are all positive, this tells us that y,... I y are all 
positive. We also have yk = t'z1 k ?t'z2,k and yl = t'z/ ? +t'z/1 . Since Z/,k = Z,1 1 
and Z k zI = 0, this tells us that yk = t' y/. So 

(yM,. . ,Yn) E {(xl, * , Xn) : Ax = 0, Xk z xl} = {(x1,... , Xn) : A'x = 0}. 

That is, A'y' = 0. -1 

Theorem 3.4. If there is an r-factor pure product Hl=1(1-xt) having norm k, 
then there is a pure product Hl=1(1- i of norm k or less having every pi < 

+/nn-1 ( n-1) 

Proof. Let m = olj and define Go..., Em and 00, . , as in Lemma 2.1. 
For all kc E {0,... ,m}, and every I E ?k and J E Ok, define A(I, J) to be the 
n-entry row matrix [ a, ... an ] where ai 1 for each i E I, aj = -1 for 
each j E J, and the other entries are all zeroes. Let A be a matrix whose rows 
are all the A(I, J)'s. It is clear that Ad' = 0, and from Lemma 2.3 it is clear 
that 1J7>(1 Hi-= xi I ) (I - Hl =1(1I-x ) 1jj for any 1,... I n such that AO3 = 0 
since EiEIfi = EjeJ/j for all I, J C n such that III is even, IJI is odd, and 
EiEI ai = EjcxJ. It is easy to see that the rank of A is at most n - 1 since 
for any c E N, if (1, ... in) = C(il, ... , an), then each Ek (respectively, Ok) for 

n 
1 (I- x"3) equals &k (respectively, Ok) for Hl_ (1 - xA), and, hence A/3 0. 

Suppose the rank of A is n - r. We have just seen that r must be at least 1. Since 
ll, . . ., I n are all positive and Ad' = 0, we can apply Lemma 3.3 r -1 times to get a 

matrix B of rank nr-I and positive reals Y, ... I Y.,n so that each entry of B is 1, 0, or 
-1, By =, andsothat {(X1. vIn) : Bx=?} C {(xi,... I n) Ax= 0} Let 
B' be the matrix B with redundant rows removed. That is, let B' be a matrix whose 
rows are n - 1 linearly independent rows of B. Now Lemma 3.2 gives us positive 
integers i1, ... I, On (or x1, . .. I X, n as they are called in the lemma) so that B'/ = 0, 

and each pi < in1 (n - 1) 2 . Of course, B/ = 0 implies Bo = 0 which implies 

AO = 0, and this tells us that II Hi=1 (1 - x't < t| _H=1 (1 -x x')tt 

Obviously, the proof of Theorem 3.4 would be simpler if we could assume that 
for any n-factor pure product of minimal norm, the corresponding matrix A in 
Theorem 3.4 had rank nr-1. In that case, we would only need Lemma 3.2. However, 
the matrices in question can have rank n - 2 when n E {2, 3, 4, 6}. It is somewhat 
surprising that this happens for a case as large as nr 6, and it would be very 
surprising if it happened for larger n, but we have no proof that it is impossible. 

Theorem 3.4 shows that one way to determine A1(n) is to calculate the norm 

of every pure product H,=1 (1 - xo'i) where every ari < ri21(r- 1)n21. The 
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number of these pure products is 

(L+/nnl~n-l~2l + n- (Ln4 I) 

Clearly, this is an impractical number of cases to check for any n for which A1(n) 
is not already known. 

4. A BETTER SIMPLE ALGORITHM 

Another simple-minded algorithm which eventually runs out of cases to check 
is a straightforward application of Lemma 2.3. For any n E N, there are only 
finitely many ways to choose P in Lemma 2.3. Theoretically, one could check all 
possible choices of 1P, solve for the corresponding pure products, and check their 
norms. Essentially, this is the same as checking all possible choices of the matrix 
A in Theorem 3.4, solving the associated systems Ad' = 0, and determining the 
associated norms 11 Hn (1 - xc,-) ij. The least such norm will be Al(n). Since 
these systems always have rank at most n - 1, it suffices to check all possible 
choices of up to n - 1 elements of 1P, or, equivalently, all possible choices of up to 
n- 1 linearly independent rows of A. In [M96], the author shows that this means 
that this algorithm has to check at most 

- (~~~3n ( l)n ) 3n-1 

cases, which is a big improvement on the algorithm in Section 3, even after we 

take into consideration the fact that each of these cases involves solving a system 

of linear equations. 

5. A MORE SOPHISTICATED ALGORITHM 

In this section, we describe a more substantial algorithm which finds all pure 

products of any given number of factors n and of norm up to any given value 

k. Our computations using this algorithm have determined that Al(n) > 2n for 

n = 7,9, 10, 11, and that the list of 7-lists given at the start of Section 3 yielding a 

pure product of norm 16 is complete (up to multiplication of all the entries in the 

list by a constant). 
So far we have written all our pure products as Hl=1 (1 -E). Much of what 

follows is easier to read if we rename the exponents so as to eliminate subscripts. 

So we use some symbols interchangeably as follows: a = a,, b = ca2, et cetera. 
Also, we will always label the exponents so that a, c< ?2 < cK3 < .... That is, 

a < b < c < .... 
For I C n, we will call EiEI ai a II-sum. Also, we say that EiEI ai is an even- 

sum if II is even, and an odd-sum if III is odd. We want to see what simultaneous 

equalities between even-sums and odd-sums are possible so that we can construct 

the corresponding set P as described in Lemma 2.3. 

Using only the information that 0 < a < b < c < ..., we can say something 

about how sums of subsets of {a, b, c,... } compare with each other. For instance, it 
is clear that a < a + b < a + b + c and so on. Another example is that a + c < b + d, 
so a + c < a + b + d. In fact, for each n E N, we can impose a partial ordering 
on the subsets of n so that for any I, J C n, we say that I < J if we know that 

EiEI ai < EZ EJ aj for all valid values of a1, ... , an (that is, for all ac,. . ., an E N 
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such that 0 < al < l2 < ... < Ka). We call this ordering the basic partial ordering. 
For instance, the following diagrams show the basic partial orders for the cases n 3 
and n = 4. 

t a + b + c + d 

tb + c + d 

a+b+c a+c+d 

4 b+c c+d a + bd 

a+c b+d a+b+c 

c a a+b a + d +bc 

\f/b d a c 

a c a+b 

4 a 

00 

In the case where n = 3, we see that for any valid values of a, b, and c, one of 
the following two statements must be true: 

O <a <b < a+b < c < a+c < b+c < a+b+c, 

o < a < b < c < a + b < a + c < b + c < a + b + c. 

This makes it clear that there are not many ways that an even-sum can equal 
an odd-sum. In fact, the only such equality that is possible is a + b = c. What 
our program does is to determine all such equalities while determining all possible 
ways that the sums could be ordered. Essentially, this is the same as determining 
all possible linear extensions of the partial orders described above except that, of 
course, the extensions we are interested in are not strictly linear. That is, in a 
linear extension, of any two elements, one is greater; but we need to consider what 
equalities can occur also. So, for instance, the orderings we consider in the case 
n = 3 are not just the two linear extensions 

0 < a < b < a + b < c < a + c < b + c < a + b + c, 

0 <a < b < c < a + b < a + c < b + c < a + b + c. 

Each of these orderings includes seven "<" symbols. The program must consider 
what happens each time a "<" is replaced by an "=". We will call the resulting 
sequences almost-linear extensions. For instance, when n = 2, the basic partial 



PURE PRODUCT POLYNOMIALS 1333 

order is given by 0 < a < b < a + b which is its own only linear extension. So all 
the almost-linear extensions of the basic partial order in the case n = 2 are 

o < a < b < a + b, 

o < a < b= a + b, 

o < a = b < a + b, 

o < a = b = a + b, 

o = a < b < a + b, 

o = a < b = a + b, 

o = a b < a + b, 

o = a= b= a + b. 

For the present, we will ignore the fact that all but two of these almost-linear 
extensions include comparisons which are invalid. (We cannot have 0 = a or b 
a + b since a > 0.) 

One can determine all possible norms of n-factor pure products by associating 
them with almost-linear extensions. For instance, if a, b, c satisfy 0 < a b < 
a+b < c < a+c = b+c < a+b+c, then we know that JJ(1_Xa)(1_Xb)(1-xC) 1 8 

because, with the exponents in strictly increasing order, (1- xa)(1 - xb)(1- XC) 

1 - 2xa ? ca+b- ? 2xa+c -a+b+c. Another example is that if a, b, c satisfy 
o < a < b < a + b = c < a + c < b + c < a + b + c, then we know that 

(1 - xa)(1 - xb)(1 - XC)) 1 6 because, with the exponents in strictly increasing 
order, (1-xa)(1_xb)(1_XC) 1-Xa-Xb+Xa+c+Xb+c-Xa+b+c. By generating all 
possible almost-linear extensions of a basic partial order for a particular n, we can 
determine all possible norms of n-factor pure products. Of course, one only wants 
to consider almost-linear extensions that make sense. For instance, one wants to 
reject any almost-linear extension that includes both the comparisons a = b and 
a + c < b + c. We will address this issue presently. 

Our program begins its execution by asking the user for a number of factors n, 
and a target norm k. Then the program generates almost-linear extensions of the 
basic partial order for the given value of n one term at a time, backtracking when 
necessary. That is, in each iteration, the program appends one term to those it has 
chosen so far in the almost-linear extension. After the initial term 0, each term 
consists of a sum preceded by either "<" or "=". For instance, every extension 
begins with "0 < a", and there are two terms that can follow this: "= b" and 
"< b". When the program finds that its choices so far cannot be an initial segment 
of an almost-linear extension of norm k or less, it backtracks by rejecting its last 
choice and replacing it with a different choice. If no other valid choices remain, the 
program tries to replace its choice one position earlier in the extension, and so on. 

For values of n for which A1 (n) is not already known, the time required to 
generate all almost-linear extensions of the basic partial order is prohibitive. As 
the program constructs an almost-linear extension, it rejects choices that cannot 
lead to an almost-linear extension of norm k or less, choices that are inconsistent 
with previous choices (such as having a = b and a + c < b + c in the same almost- 
linear extension), and redundant choices. The program also recognises when the 
choices it has already made completely determine the remainder of the almost-linear 
extension. We now describe the algorithm the program follows for these purposes. 
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In constructing the almost-linear extensions, the program uses four main data 
structures holding the following information: the almost-linear extension currently 
under consideration (to the extent that it has been determined so far); for each 
term, a list of all the terms that are eligible to follow it; for each sum in the basic 
partial order, a count of how many sums in the basic partial order must be added 
to the extension before this one is eligible; and a matrix R so that Raf = 0. We 
now state the steps in the algorithm. After stating the whole algorithm, we will 
elaborate on some parts of it. 

Step 1. Append another term to the end of the almost-linear extension. 

Step 2. If the term in Step 1 included an "=", update R. 

Step 3. If R has rank n - 1, then the extension is completely determined so go to 
Step 6. 

Step 4. Construct the list of terms that could be next in the extension. Reject 
from the list terms of the following types: 

(i) any "<"-term if "<" would make the norm too big. 
(ii) any term whose sum is greater than another sum in the list. 

If we find in this list a sum which is less than the last sum in the extension, go to 
Step 7. 

Step 5. If we have determined half the extension, then we have determined the 
entire extension; otherwise, go to Step 1. 

Step 6. To get to this step, the extension must be completely determined. Cal- 
culate the resulting norm. If it is small enough to be interesting, report the norm 
and how it is achieved (the extension and R). 

Step 7. Remove the last term from the extension. If we have something else to 
replace it with, go to Step 1. Otherwise, repeat this step. The program terminates 
when this step backtracks all the way to the start of the extension. 

This is not a complete description of our computer program. We used several 
tricks in writing the program which are vital for making the program as fast as it 
is, but which are not of much theoretical interest. For instance, in Step 4, when 
we compare all sums in the list, we remember which ones are equal so that in the 
next iteration of Step 1, we append not just one term, but also all the sums from 
the list which are equal to the sum in that term. We also will not describe the 
simple rule we used to make sure that equalities are used in only one permutation. 
For instance, the following two initial segments of an almost-linear extension are 
superficially different, and our program has distinct representations for them, but 
we do not want them to lead to distinct branches in the search tree since they are 
algebraically equivalent. 

o < a < b < a + b = c, 
o < a < b < c = a + b. 

We now elaborate on some of these steps in order of complexity. 

Step 5. This is essentially explained in the proof of Lemma 2.2. 

Step 2. Suppose the term appended in Step 1 was "= EiEI ai " and the sum in 
the previous term was EjGJ aj. Then let a,.... , a, equal zero except that ai = 1 
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foreachi E I\Jand aj -1 foreachj E J\I. Then (a,, a,) (a)(c,, ,)= 
EiEI i -EjEej j = 0. We append the row [ a, ... an ] to the matrix R and 
then put R in reduced row-echelon form. So R remains a matrix so that Rag = 0. 

Step 4. The list of terms that could be next in the extension is a list of terms 
whose sums have not yet appeared in the extension, but all of whose predecessors 
in the basic partial order have already appeared in the extension. Actually, it may 
be a bit of an exaggeration to say the program "constructs" this list every time 
it executes Step 4. The program keeps track of appropriate data about the basic 
partial order and how many immediate predecessors of each sum have already been 
used so that updating this list in each iteration takes very little time. For each sum 
that could be next in the extension, we put two terms in the extension one with 
"<" and one with "=" unless a "<" at this point would force the norm of the 
extension to be too big, in which case we just use the "="-term. This requires a 
relatively lengthy explanation, so we will elaborate on the rest of Step 4 first. 

We compare all the sums in the list to each other as well as to the last sum in the 
extension using the matrix R. For instance, the equalities that have appeared so far 
in the extension, and hence are represented in R, may tell us that b+c+f = 3b+5a 
and d + e = 2b + 5a. So if both these sums appeared in the list of potential next 
terms, we would throw out of the list the term(s) in which b + c + f appears, since 
any term with d + e would have to appear first in the extension. If we find that 
there is a sum in the list which is equal to the last sum in the extension, then we 
throw out of the list all terms with sums not equal to the last sum in the extension. 
If we find that there is a term in the list whose sum is less than the last term in 
the extension, then we know that this branch of the search tree cannot lead to 
a complete algebraically valid almost-linear extension and we jump to Step 7 to 
backtrack. 

The matrix R is constructed according to equalities that appear in the extension, 
but one can also glean important information from inequalities in the extension. 
For instance, if we had "g < b + c + e" in the extension, and both a + g and 
a + b + c + e appearing in the list of possible next terms, we would reject from the 
list the term(s) using a + b + c + e since we would need a term with a + g to appear 
first. 

Another effective measure used by the program is to keep track of how big or 
small b can be in terms of a. Theoretically, the matrix R might reduce sums to 
expressions in any of the variables, but experimentally we have found that almost 
all significant branches of the search tree have R reducing sums to expressions in 
a and b. For instance, equalities represented in R might tell us that c = a + b and 
d = 3a + b. Now suppose the extension includes the relations d < b + c < a + d. 
This tells us that 3a+b < a+2b < 4a+b and, hence, 2a < b < 3a. If a+b+c 
appeared in the list of potential next terms, any extension that we could get from 
this point would include the algebraic relation a + b + c > a + d, which we know 
implies 2a + 2b > 4a + b, which implies 2a > b, contradicting our bounds on b 
in terms of a. So if this happened, we would know that we could not construct 
a complete algebraically valid extension from this point, and we would jump to 
Step 7 to backtrack. 

The preceding two paragraphs describing the use of inequalities to prune the 
search tree were not part of our original plan for Step 4, but the empirical evi- 
dence of initial runs of the program made it clear that the absence of these rules 
was causing the program to waste a lot of time in futile searches for algebraically 
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valid completions of extensions which one could prove had no algebraically valid 
completions. 

We now describe what we meant by a "<" making the norm too big. The rule 
is easy to apply, but the underlying mathematics is somewhat involved. 

Theorem 5.1. If a,,... Ica E N, then 

_ 
(zc) 

k / 

kE0j 
I | odd I JI even 

for all k < n. D 

Dorwart and Brown [DB37, p. 625, item 5] attribute Theorem 5.1 to Escott. This 
author [M96] has found a new proof of this theorem which shows that the identity 
holds for ai,... a, in any ring. This result gives us an easy way to construct 
multigrades of size 2'-1 and degree n - 1. Furthermore, for each occurrence of 
I, J in Theorem 5.1 so that EiEI i = EjcEJ( aI we can reduce the size of the 
multigrade by 1 since eliminating these two sums obviously leaves a multigrade of 
the same degree. With Lemma 2.3, this observation yields the following corollary 
(cf. [BI94z, Proposition 10]; [M96]). 

Corollary 5.2. If there is an n-factor pure product of norm k, then there is a 
multigrade of degree n - 1 and size k D Z9 ~~~~~~~~~~2 

Steinig [S71, Theorem A] says that the following theorem of Laguerre [L98, p. 28], 
was first proven correctly by Polya [P13]. It requires some effort to piece together 
a proof from the literature; the pieces are collected and presented coherently in 
[M96]. 

Corollary 5.3. Let a, < ... < ak and b1 < ... < bj be natural numbers with no 
ai = bj. Let (c1,... Ick+l) be the permutation of (ai,... ,ak,bl,... ,bl) so that 
C1 <* < Ck+l. Fori = 1,...,Ik+1, let 

Si = Ijj : i < i, cj Ez All|- 11': i < i, cj E B1} 

and let 

I = {i 2 < i < k + I -1, I(Si1 s1, si+1) E {(-1, 0, 1), (1,, O-1)}}. 

Then there are no more than III positive real values of t for which 

k I 

Sait = bit. 
i=1 i=1 

One implication of this corollary is that a multigrade of degree d must have size 
at least d + 1. (Steinig [S71] attributes this result to Bastien [B13].) That is, if we 
have a,,... , ak,b1,... ,bk so that no ai = bj and 

k k 

ait = bit 
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fort= 1,... ,d, then k > d + 1. Moreover, if a, < b1, a, < < ak, bi < < bk, 
and k =d+ 1, then 

a, < bi < b2 < a2 < a3 < b3 < b4 < a4 < a5 <.... 

If one is only interested in precisely this rule, a simple proof is repeated in [BI94, 
Corollary 2, pp. 8-9], but even if this pattern is not followed exactly, Corollary 5.3 
gives us a rule telling us how big k has to be in terms of how much the order of the 
ai's and big's differs from this pattern. The way in which these numbers correspond 
to the pure product problem is that, for any pure product Hl (1(-Emx), if one 
constructs P as in Lemma 2.3, then the ai's and b,'s are the even-sums and odd- 
sums, respectively, which do not appear in P, so the corresponding norm is 2k. 
And, for instance, if we want an almost-linear extension corresponding to an n- 
factor pure product of norm 2n, it could begin with 

o < a < b < c = a + b, 

but it could not begin with 

0 < a < b < c <... 

This is what we mean by a "<" making the norm too big. This completes our 
description of the algorithm. 

When we first developed this algorithm, we used it to work through the n = 7 
case by hand to prove that Al (7) = 16. This proof was 40 pages long. We started 
with the very long case n = 7 because it was the least n for which A1 (n) was 
not already known. Afterward, S. Maltby [M94a] determined all possible ways of 
achieving a norm of 2n for n =1,... , 6 following the same method. When we 
finished the computer program, it verified these results. In particular, it verified 
the 40-page proof in 5 seconds. 

The following table shows all the results our program has produced. For n = 

3,. . ., 11, the table gives a lower bound on A1 (n), the least norm of an n-factor 
pure product found by the program, and the values of [a,, . . ., I n] found by the 
program which realise that norm for 11 Hl 1 (- x' ) Hi. Except for the cases n = 10 
and n = 11, our program has verified that the table's list of values of [al,.. I, an] 
realising the given norm is complete. In this table, a and b are parameters for 
which one can substitute any natural numbers. Asterisks indicate results which 
have not appeared previously in the literature, although some have been discov- 
ered independently. In particular, S. Maltby [M94a] and Walley [W94] simply 
used computers to generate 7-lists and checked their norms to discover all the 7- 
lists in the table after we discovered all but two of them by hand. S. Maltby 
[M94a]; [M94b] also found some of the other lists in the table. The lists not 
marked with asterisks appear in Borwein and Ingalls's paper [BI94]. Borwein [B94] 
says they found some of the other lists in the table but only recorded the ones in 
their paper. We did not run the program long enough to get any results for 12- 
factor pure products, but S. Maltby [M94b] found that 11 _(1 (I - x =',) 36 for 
[ai,.. ., 12] = a[1, 2, 3, 5, 7,8, 9,11,13,17,19, 31], which is different from Borwein 
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and Ingalls's example a[1, 2, 3,4, 5, 6, 7, 8,9, 11, 13, 17]. 

n Al (n) > Al (n) < [all.. a?n] 

3 6 6 [a,b,a+b]* 

4 8 8 [a,b,a+b,a+2b]* 

5 10 10 a[l,2,3,5,7] 
a[1,3,4,5, 7]* 

6 12 12 [a,b,a+b,a+2b,a+3b,2a+3b]* 
a[l, 3,4,5, 7, 11] 

7 16* 16 a[l, 1,2,3,4,5,7]* 
a[l, 2,3,4,5, 7, 11] 
a[l, 2,3,5, 7, 8,13]* 
a[l, 3,4,5, 7, 8, 11]* 

a[I, 3, 4, 5, 7, 11, 17]* 
a[l, 3,4,7,10,11,131* 
a[l, 5, 6, 7, 8, 11, 13]* 
a[2,3,5, 7, 8, 11, 13]* 

8 16 16 a[l,2,3,5,7,8,11,13] 
a[2, 3, 5, 7, 8, 11, 13, 18]* 
a[2,3, 5, 7, 8, 11, 13, 19]* 

9 20* 20 a[l,2,3,4,5,7,9,11,13] 
a[l, 2,3,5,7,8,9,11, 131* 

a[l, 2,3,5, 7,8,11, 13,19]* 
a[l, 4,5, 6, 7, 9, 11, 13, 17]* 
a[2, 3,5, 7, 8, 11, 13, 17, 19]* 

10 24* 24 a[l,2,3,4,5,7,9,11,13,17] 

11 24* 28 a[1,2,3,5, 7, 8,9, 11, 13, 17, 19] 

How many steps are required by this algorithm to determine whether there is 
an n-factor pure product of norm k or less? It seems hopelessly complicated to 
answer this question accurately, so we will just get an upper bound and provide 
some empirical data. For n-factor pure products, the basic partial order has 2n 

elements. A partial order on 2n elements has at most 2n! linear extensions and 
2n!222 -1 almost-linear extensions. This last number is an upper bound on the 
number of cases the program evaluates, but the following empirical data show that 
the program actually does much better than this. The following table lists the 
number of iterations required by the program to determine all n-lists [la, ... , an] 

so that 11 H>(=1(- xoai)l - 2n. One can see that, at least up to n = 11, the number 
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of iterations required to find all n-lists [ol,... , an] so that n]7J> (1- x'i) Ii 2n 
is very roughly n!. 

n iterations 
3 12 
4 39 
5 171 
6 790 
7 4692 
8 23,358 
9 138,335 

10 1,189,069 
11 19,241,795 

Determining all n-lists [al, ... ? n] so that 1H l=1(1 - x',) ti 2n + 2 re- 
quired 10, 750 iterations for n = 7 and 508, 820 iterations for n 9. The pro- 
gram computed that 20 < A1(10) < 24. Because of Theorem 2.4, this tells us that 
A1(10) = 24. We ran the program to find all 10-lists so that II H1?(1-xc, )tII = 24, 
but after millions of iterations (i.e. a couple of days), the program seemed to have 
covered only a fraction of its search tree, so we terminated execution. So even 
though the algorithm provides a way to calculate all n-factor pure products of 
norm k for any n E N, the algorithm may not be practical when k > 2n. 
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